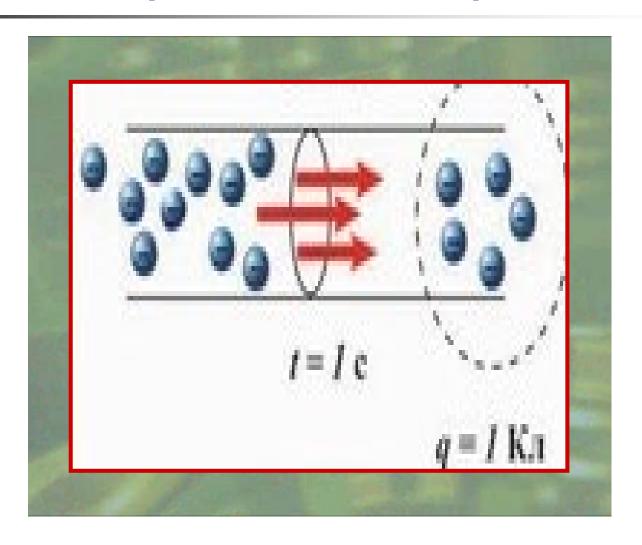


тока нет

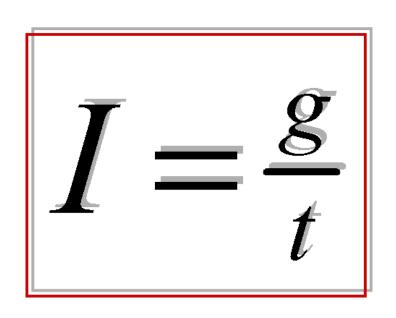
беспорядочное движение заряженных частиц

ток есть

упорядоченное направленное движение свободных частиц под действием электрического поля



Что нужно знать о физической величине


- Какое явление или свойство тел характеризует данная величина
- Определение величины
- Расчетная формула
- Единицы измерения
- Способы измерения

Сила тока-это физическая величина, показывающая, какой заряд проходит через поперечное сечение проводника за 1 с

Сила тока равна отношению электрического заряда, прошедшего через поперечное сечение проводника, ко времени его прохождения

Ампер Андре Мари (1775-1836 гг.)

«Он был также добр и также прост, как и велик».

За единицу силы тока принимают силу тока, при которой отрезки двух параллельных проводников длинной 1м, находящихся в вакууме на расстоянии 1м друг от друга, взаимодействуют с силой 2·10-⁷H.

Единицу силы тока называют ампером (1А) в честь французского ученого Андре Ампера.

I [A]

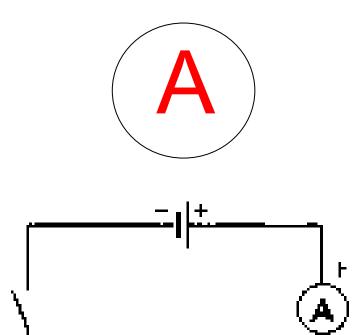
1A=1Kл/1c

Название устройства	Значение силы тока
Лампочка карманного фонаря	0,1 A
Переносной магнитофон	0.3 A
Лампочка в классе	0,5A
Телевизор	1A
Стиральная машина	2A
Электрический утюг	3A
Двигатель электровоза	30 A
Молния	Более 1000А

Миллиампер (мА) 1мА=0,001А

Микроампер (мкА) 1мкА=0,00001A

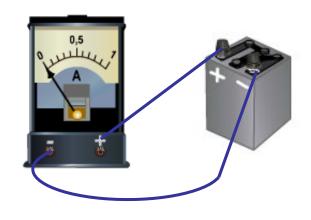
Килоампер (кА) 1кА=1000А


Сила тока	Эффект действия	
0-0.5мА	Отсутствует	
0.5-2мА	Потеря чувствительности	
2-10мА	Боль, мышечные сокращения	
10-20мА	Растущее воздействие на мышцы	
16мА	Человек не может освободиться	
20-100мА	Дыхательный паралич	
100мА-3А	Срочная реанимация	
Более 3А	Остановка сердца	

Безопасна до 1 мА

Прибор для измерения силы тока

Амперметр



Включается в цепь последовательно

Правила пользования амперметром

- Включается в цепь последовательно
- Клемму со знаком «+» подключают к
 «+» источника, «-» к «-»
- Не включатьПревышающиеноминальные значениясилы тока

 Беречь прибор от ударов, тряски и пыли.

тока на различных участках электрической цепи.

- Используя рис., стр. соберите электрическую цепь А,Б,В
- Измерьте и запишите значения силы тока
- Выполните в тетради схемы соединения цепей А,Б,В.
- Сравните значения силы тока на разных участках цепи, сделайте вывод

Домашнее задание:

§38, ynp.30 (2,3)

Menalo ychexob!

